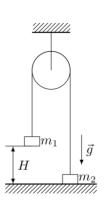
Возможные решения олимпиады по физике "Юные таланты"

10 класс

16 ноября 2019 г.


1. Наблюдатель на железнодорожной станции заметил, что время прохождения пассажирского поезда мимо станции $t_1 = 30$ с совпадает с временем прохождения товарного поезда мимо станции. Товарный поезд проходит мимо наблюдателя в движущемся пассажирском поезде за время $t_2 = 20$ с. Во сколько раз товарный поезд длинее пассажирского?

Решение: Пусть длина пассажирского поезда $-l_1$, скорость пассажирского поезда $-v_1$, длина товарного поезда $-l_2$, скорость товарного поезда $-v_2$. Тогда время, за которое поезда проходят мимо станции, составит $t_1 = \frac{l_1}{v_1} = \frac{l_2}{v_2}$. Товарный поезд проходит мимо наблюдателя

в движущемся пассажирском поезде за время $t_2 = \frac{l_2}{v_1 + v_2}$. Откуда находим отношение длин

$$\frac{l_2}{l_1} = \frac{t_2}{t_1 - t_2} = 2.$$

2. Маленькие грузы массами m_1 и m_2 соединены легкой нерастяжимой нитью, которая перекинута через невесомый блок, как показано на рисунке. Первоначально тяжелый груз m_1 находится на высоте H над горизонтальной поверхностью, а легкий груз m_2 покоится на этой поверхности. Грузы отпускают без начальной скорости. В момент падения груза m_1 происходит абсолютно неупругий удар. Определите на какую максимальную высоту m_1 некоторое время поднимется груз m_1 под действием силы натяжения нити.

Решение: Перед ударом скорость обоих грузов равна *v*, из закона сохранения энергии

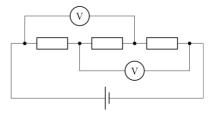
$$m_1 gH = m_2 gH + \frac{m_1 v^2}{2} + \frac{m_2 v^2}{2}, \quad v^2 = 2gH \frac{m_1 - m_2}{m_1 + m_2}.$$

Затем груз m_2 поднимается выше, останавливается, опускается на высоту H со скоростью v и натягивает нить, происходит абсолютно неупругий удар, в результате грузы движутся со скоростью u

$$m_2 v = (m_1 + m_2)u$$
, $u = \frac{m_2 v}{m_1 + m_2}$.

Из закона сохранения энергии находим высоту подъема груза m_1

$$m_2gH + \frac{m_1u^2}{2} + \frac{m_2u^2}{2} = m_1gh + m_2g(H - h), \quad h = \frac{u^2}{2g}\frac{m_1 + m_2}{m_1 - m_2}.$$


Окончательно находим $h = H \frac{m_2^2}{\left(m_1 + m_1\right)^2}$.

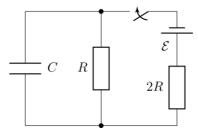
3. Однородный массивный стержень массой m и длиной l находится s горизонтальном положении благодаря действию двух точечных опор, расположенных на расстоянии l/6, как показано на рисунке. Определите силы, действующие на стержень со стороны опор, считая, что одна опора располагается на краю стержня.

Решение: Пусть силы реакции опор равны N_1 и N_2 , их плечи относительно центра масс стержня $l_1 = l/3$ и $l_2 = l/2$, тогда условия равновесия имеют вид

$$mg+N_2=N_1,\quad N_1l_1=N_2l_2\ .$$
 Находим силы реакции $\ N_1=\frac{l_2}{l_2-l_1}mg=3mg,\quad N_2=\frac{l_1}{l_2-l_1}mg=2mg$.

4. Три одинаковых резистора соединены последовательно и подключены к идеальному источнику тока с напряжением U=5 В. Каждый из двух одинаковых неидеальных вольтметров, показывают напряжение $U_1=2,5$ В. Что будет показывать один вольтметр, если другой отключить от цепи?

Решение: Поскольку $U=2U_1$, то напряжение на среднем резисторе равно 0, ток через него не течет. В таком случае цепь симметрична и сопротивления вольтметров равны совпадают с сопротивлениями резисторов и равны R. После удаления одного из вольтметров сопротивление оставшегося вольтметра и двух параллельных резисторов равно $R_1=2R/3$, а общее сопротивление цепи $R_2=5R/3$. Показание вольтметра совпадает с падением напряжения на нем и равно $U_2=R_1U/R_2=2$ В.


11 класс

Задачи 1 и 2 у 10 и 11 классов одинаковые.

3. Гелий постояной массы при объеме $V_0 = 1$ л и давлении $p_0 = 1$ атм с начальной температурой $T_0 = 200$ К расширяется в равновесном процессе так, что отданное газом количество теплоты Q в три раза меньше совершённой газом работы A. Определите максимально возможное значение работы A газа в таком процессе.

Решение: Согласно первому началу термодинамики $Q = A + \Delta U$, где Q = -A/3, $\Delta U = \frac{3}{2} \nu R \big(T - T_0 \big)$. Тогда работа составит $A = \frac{9}{8} \nu R \big(T_0 - T \big)$ и достигает максимального значения при $T \to 0$, которое согласно уравнению состояния равно $A = \frac{9}{8} \, p_0 V_0 = 113$ Дж.

4. В электрической цепи с идеальным источником тока до замыкания ключа ток отсутствовал, а конденсатор был не заряжен. Ключ на некоторое время замыкают, а потом размыкают. За то время, пока ключ был замкнут, через резистор R протёк заряд q₀/2, после размыкания ключа через тот же резистор протёк заряд q₀. Определите количество теплоты, которое выделилось в цепи при замкнутом ключе.

Решение: После замыкания ключа через источник протечет заряд q, который накапливается на конденсаторе и протекает через резистор R. Из условия задачи следует, что заряд конденсатора до размыкания ключа равен $q_0/2$, тогда $q=q_0/2+q_0=3q_0/2$. Работа источника тока $A=3q_0E/2$ преобразуется в тепло Q и запасается в конденсаторе, энергия которого $W=CE^2/2$, тогда $Q=3q_0E/2-CE^2/2$.